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Abstract: Markov chains are useful to model various complex systems. In numerous situations, the underlying Markov chain is 

subject to changes. For example, states may be added or deleted and transition probabilities perturbed. It is therefore, necessary to 

ensure the robustness of the system and to estimate the resulting deviation in the characteristics. In this paper we study the 

sensitivity of finite Markov chains subject to changes in their state space and propose updating formulas and perturbation bounds. 

 

Keywords: Markov chains, discrete state space, perturbation, strong stability, quantitative estimates, comparison. 

 

1 Introduction 

 Markov chains are widely used in practice. Numerous real systems can directly or through a form 

of embedding, be described by Markov chains. However, a lot of real systems are very complicated and it 

might be necessary to use approximations and simplify the original model in order to make it tractable. 

Different kinds of perturbations can also affect the model (e.g., the parameters are generally estimated 

from empirical data by means of statistical methods). It is then necessary to study the robustness of the 

system and estimate the deviation in its characteristics due to all kinds of perturbations. In particular, the 

state space might be subject to changes, for example, when some states are added or deleted. Consider for 

instance, a simple queueing system with limited waiting capacity (or finite source). We might be interested 

to know how the system reacts when we increase or decrease the waiting capacity. Similarly, if we 

consider an (s, S) inventory system, then we may be interested in knowing the effect of different kinds of 

perturbations (see, e.g. [7]). In particular, the perturbation of the order-up-to level S . The on-hand 

inventory process X is a Markov chain (under some conditions) with states in {0, . . , S}. Perturbation of the 

parameter S might be looked at as adding or deleting states. Another example is that of the Google search 

engine page rank. Google models the web as a huge Markov chain where web pages are states (nodes) and 

hyperlinks are transitions (see, e.g., [5]). Web pages are then ranked to allow ordering of search results. As 

there is a constant change in the internet where new pages are created and others are deleted every day, 

Google updates its web matrix and computes the updated page ranks in a constant basis. Therefore, it is 

important to derive updating formulas allowing the computation of the new characteristics from the old 

ones and perturbation bounds allowing measuring the difference between the original and the perturbed 

chains. 

 

 Updating formulas and perturbation bounds for Markov chain may be found in the literature. 

However, it is assumed that the changes affect the transition matrix of the chain, that is, the original and 

the perturbed Markov chains have the same state space. Schweitzer [9] used the fundamental matrix of 

Kemeny and Snell [4] to express the perturbation bound. Meyer [6] singly or with coauthors used the 

group inverse. Hunter [3] suggested the use of a wider class of generalized inverses and Seneta [10, 11] 
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suggested the use of ergodicity coefficients. The survey paper by Cho and Meyer [2] collects and compares 

eight perturbation bounds. The qualitative question is treated in [8] where it is shown that a finite 

irreducible Markov chain is strongly stable. Strong stability [1] means that small changes in the inputs 

(transition matrix) can lead to only small deviations in the output (stationary vector and stationary 

characteristics). In other words, a strongly stable Markov chain reacts continuously to perturbations. In this 

paper, we focus on the problem of comparison of two Markov chains where their states spaces differ in 

some states. We provide updating formulas and perturbation bounds. 

 

2  Preliminary and notations 
 

 Let X = (X𝑛)n≥0  be a discrete-time homogeneous Markov chain with finite state space E0 . 

Random transitions between states are given by the transition matrix P0 . X admits a unique stationary 

vector π(0) = (π0
(0)

,π1
(0)

, . . . ,πN
(0)

)T  satisfying :  

 

π(0)TP0 = π(0)T ,

π(0)Te =  

i∈E0

πi
(0)

= 1.
  

Here and in the sequel, e = (1,1, . . . ,1)T is the vector of all ones of a suitable dimension. Also, 𝟎 is either a 

vector or a matrix of all zeros and I is the identity matrix. Denote by Π0 the matrix eπ(0)T  and let Z0 =
(I − P0 + Π0)−1 be the fundamental matrix [4] of the chain X. 

In this paper, we may use any matrix norm ∥. ∥ for which ∥ P0 ∥< ∞. A special interest is given to the norm 

∥. ∥1. Also, all vectors are column vectors. Row vectors are transposed. 

 

3  Comparison of Markov chains 

 

 Now, we present a method to compare Markov chains with different state spaces. This problem 

might arise when some states are added (or removed) to the initial state space and such situations are 

multiple in practice. 

Assume that the state space is changed by adding one or more states ET  and correcting the transition 

probabilities in such a way that the new Markov chain Y is irreducible with transition matrix Q and state 

space E = E0 ∪ ET. 

In order to be able to compare the two chains, we will first construct an intermediate Markov chain with 

the same characteristics as X and the same state space as Y. The transition matrix Q of the chain Y may be 

written in the form :  

Q =  
Q0 Q1

Q2 QT
  

where Q0 and QT  are square and they correspond respectively to states E0 and ET . Let X  be the Markov 

chain with transition matrix :  

P =  
P0 𝟎
Q2 QT

 . 

Then, X  has the stationary vector π T = (π(0)T ,𝟎T) and hence the stationary characteristics of the chain X. 

The idea is that we think about the newly added states as being transitive in the original state space and that 

the perturbation affects the transition matrix in such a manner that the resulting chain Y is irreducible. Let 

also Π0 be the matrix 𝑒𝜋0𝑇 and by Π  the matrix eπ T . 

 

Remark 3.1 (States deletion) If we delete some states from state space (e.g. reducing waiting room 

capacity in a queueing system, decreasing the order-up-to level S in the (R, s, S) inventory system, etc.) 

then we can think of the deleted states as if they become transitive in the new chain. Hence, we keep the 

original Markov chain with transition matrix  

P =  
P0 P1

P2 PT
  

and we construct a new intermediate Markov chain for the perturbed chain with transition matrix as 

follows  
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Q =  
Q 𝟎
P2 PT

 . 

It appears that we can restrict our analysis to only one case (either adding or deleting state) because of 

symmetry.  

 

The first step consists in checking the qualitative property of robustness of the Markov chain X. One has to 

be sure that the chain reacts continuously to the perturbations so that small deviations in the input (the 

transition matrix) will result in a bounded deviation of the output (stationary vector). Therefore, we prove 

that  

Theorem 3.1 The Markov chain 𝑋  is strongly stable with respect to the norm ∥. ∥1 , i.e., for each 

irreducible stochastic matrix 𝑄 in the neighborhood, having a stationary vector 𝜈 we have :  

∥ νT − π T ∥1→ 0   𝑎𝑠   ∥ 𝑄 − 𝑃 ∥1→ 0. 
Proof.  Let Q be an irreducible stochastic matrix with stationary vector ν. We may write :  

νT − π T = νTQ− π T𝑃  
 

νT − π T = νT(Q − 𝑃 ) + (νT − π T)𝑃  
 

(νT − π T)(I− 𝑃 ) = νT(Q − 𝑃 ). 
Since (νT − π T)Π = 0, we have :  

(νT − π T)(I− 𝑃 + Π ) = νT(Q − 𝑃 ) 

Since ET  is transitive, QT
n → 0  as n → 0  implying that ∃n0 > 0  such that ∥ QT

n0 ∥< 1 . This means that 

(I − QT) is invertible with inverse (I − QT)−1 =  ∞
i=0 QT

i . Also, the matrix  

(I − P + Π ) =  
I − P0 + Π0 𝟎

eπ(0)T − Q2 (I − QT)
  

is invertible with inverse  

Z =  
Z0 𝟎

−(I − QT)−1(eπ(0)T − Q2)Z0 (I − QT)−1  

Then,  

νT − π T = νT(Q − P )Z .         (1) 

and  

∥ νT − π T ∥1≤∥ ν
T ∥1∥ Q − P ∥1∥ Z ∥1 

 

∥ νT − π T ∥1≤ C ∥ Q − P ∥1 

where C is constant. Whence, the strong stability of the chain X .  

 

Let  

B = Q1(I − QT)−1.         (2) 

and  

A =  (Q0 − P0)− B(eπ(0)T − Q2) Z0       (3) 

In the sequel, we suppose that the following condition holds :  

 ∃m > 0   such  that   ρ =∥ Am ∥< 1.       (4) 

 This means that (I − A) is invertible with inverse (I − A)−1 =  ∞
i=0 Ai. Furthermore,  

∥ (I − A)−1 ∥=∥ 

∞

i=0

Ai ∥≤ 

∞

i=0

∥ Ai ∥ 

by writing i as i = km + r, we obtain  

∥ (I − A)−1 ∥≤  

∞

k=0

 

m−1

r=0

∥ ArAkm ∥≤  

∞

k=0

  

m−1

r=0

∥ Ar ∥ ∥ Am ∥k 
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∥ (I − A)−1 ∥≤ τ 

∞

k=0

ρk =
τ

1 − ρ
 

where,  

τ =  m−1
r=0 ∥ Ar ∥≤ m max

{0≤r≤m−1}
∥ Ar ∥.       (5) 

 

It is possible to compute the stationary vector of the perturbed chain directly from that of the original 

chain. The following result gives an updating formula for the stationary vector.  

Theorem 3.2 The stationary vector 𝜈 of the chain 𝑌 is given by :  

𝜈𝑇 = 𝜋(0)𝑇(𝐼 − 𝐴)−1(𝐼,𝐵) 

where 𝐴 and 𝐵 are given by (3) and (2) respectively.   

Proof.  From equation (1),  

νT = π T(I− (Q − P )Z )−1 

where, Z = (I − P + Π )−1.  

(Q − P )Z =  
(Q0 − P0) Q1

𝟎 𝟎
  

Z0 𝟎

−(I − QT)−1(eπ(0)T − Q2)Z0 (I − QT)−1  

 

(Q − P )Z =  
A B
𝟎 𝟎

  

with,  

A =  (Q0 − P0) − Q1(I− QT)−1(eπ(0)T − Q2) Z0 

and  

B = Q1(I − QT)−1. 
Thus,  

(I − (Q − P )Z )−1 =  (I − A)−1 ((I − A)−1B)
𝟎 I

  

Finally,  

νT = (π(0)T ,𝟎T)  (I − A)−1 ((I − A)−1B)
𝟎 I

  

 

νT = (π(0)T(I− A)−1 ,π(0)T(I− A)−1B). 
 

The updating formula given by Theorem 3.2, allows us to compute the stationary vector of the chain Y 

from the stationary vector of the chain X. 

An important question in sensitivity analysis is the estimation of the difference between the characteristics 

of the original and the perturbed systems. This is in particular very important if one model is to be used as 

approximation to the other. Thus, if we need to estimate the changes made to the stationary probabilities, 

then we may use the following results.  

Theorem 3.3 The difference between the stationary vectors of the chains 𝑋  and 𝑌 is given by :  

∥ 𝜈𝑇 − 𝜋 𝑇 ∥1≤∥ 𝐴 ∥1 +∥ 𝐵 ∥1 . 
where 𝐴 and 𝐵 are given by (3) and (2) respectively.  

Proof.  From equation (1) we have :  

νT − π T = νT(Q− P )Z  
 

∥ νT − π T ∥1≤∥ ν
T ∥1 . ∥ (Q − P )Z ∥1 

where ∥ νT ∥1= 1 and  

∥ (Q − P )Z ∥1=   
A B
𝟎 𝟎

  
1
≤∥ A ∥1 +∥ B ∥1. 

 

Observe that the use of the norm ∥. ∥1  allows us to obtain a perturbation bound without the need to 

compute the stationary vector of the perturbed chain Y since ∥ νT ∥1= 1 for any probability vector 𝜈𝑇.  

To allow the use of a more general class of norms we present the following result.  

Theorem 3.4 The difference between the stationary vectors of the chains 𝑋  and 𝑌 is given by :  
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∥ 𝜈𝑇 − 𝜋 𝑇 ∥≤∥ 𝜋(0)𝑇 ∥. ∥ (𝐴,𝐵) ∥
𝜏

1 − 𝜌
. 

where 𝐴 and 𝐵 are given by (3) and (2) respectively, 𝜌 is defined in (4) and 𝜏 in (5). 

  

Proof.  The stationary vector ν of the chain Y is given by :  

νT = (π(0)T(I− A)−1 ,π(0)T(I− A)−1B). 
Then,  

νT − π T = (π(0)T(I− A)−1 − π(0)T ,π(0)T(I − A)−1B) 

 

νT − π T = (π(0)T(I− A)−1 I− (I − A) ,π(0)T(I− A)−1B) 

 

νT − π T = π(0)T(I− A)−1(A, B). 
Thus,  

∥ νT − π T ∥=∥ (π(0)T(I− A)−1(A, B) ∥ 
 

∥ 𝜈𝑇 − 𝜋 𝑇 ∥≤∥ 𝜋 0 𝑇 ∥. ∥  𝐼 − 𝐴 −1 ∥. ∥  𝐴,𝐵 ∥ 
 

∥ νT − π T ∥≤∥ π(0)T ∥. ∥ (A, B) ∥
τ

1 − ρ
. 

 

Finally, it is worthy to note that the matrix A # = Z − Π  is the group generalized inverse [6] of the matrix 

(I − P ) and may be used in the same manner as Z  (other generalized inverses [3] may also be used). 

Furthermore, similar perturbation bounds of those cited in [2, 8] may be derived in the same manner as in 

the classical results of perturbation theory. 
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